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Abstract

The Computer Architecture literature is now replete with papers concerned with the change in
architectural direction from ever more complex single cores to single chip multi-core designs.
Along with this opportunity come major challenges. Among them is the sheer size of the space of
possible designs. The investigation of this space is far from complete. What is needed to aid in
this task is an integrated suite of tools that provides support throughout the design life-cycle, from
early prototyping to final design. Here we present a floorplan tool targeted towards early
prototyping of pre-RTL CMP design concepts. As such, it acts as a complement to traditional
floorplan tools that are more appropriate later in the design process. Early phase CMP design
investigations into the distribution of power and temperature, pin allocation, core/cache cluster
size, and NoC design trade-offs are examples of experiments that can benefit from CMP layout
information without many of the design details needed to drive a traditional floorplanner. We use
two such studies to validate the benefit of the tool in rapid prototyping.

The floorplan is specified using a model similar to that supported by GUI toolkits such as Java
Swing or Windows Presentation Foundation. The floorplan design is comprised of a hierarchy of
components placed within containers that provide a variety of layout services. These services
include support for geographic hints for component placement, generalized grid layouts, and
other layout algorithms. The tool can also be integrated with other tools in the suite by absorbing
area information from tools such as McPAT, and producing output for ingestion by tools such as
HotSpot. In addition, the current services can act as the basis for building more specific layout
algorithms such as those targeting a certain type of NoC configuration, cache partitioning
strategy, or SIMD design. Finally, the architecture is flexible enough to allow for the inclusion of
a traditional floorplan tool such as ParquetFP to support detailed floorplanning once enough
design information is available. This tool, which we call ArchFP, can be downloaded from
http://lava.cs.virginia.edu/archfp.

1. Introduction

The advance of Moore’s Law has increased the number of transistors available on a chip faster
than can be profitably utilized by single cores of ever increasing complexity. Instead, the focus of
chip design has shifted towards the inclusion of many cores on a chip leading to the production of
Chip Multi-Processors (CMPs). The size and complexity of the design space for CMPs is
staggering. It spans multiple dimensions such as the number, type, and complexity of the cores,
the size of on-chip cache, the cache sharing model, the type of on-chip network interconnect
between components, local vs. global time synchronization, the type and number of memory
controllers, etc.
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While there is a combinatorial explosion of the possible system architectures to contemplate,
there is also a number of increasingly hard to overcome constraints that must be dealt with.
These include pin count, power density, temperature density, and total die size. Each of these are
worthy of study in their own right. But it is also becoming increasingly clear that making system
wide architectural decisions while attending to one or two of these constraints at a time can often
lead to sup-optimal designs [10].

In order to investigate the large CMP design space in a comprehensive fashion, increased
emphasis must be placed on integrated tool suites capable of modeling single chip multi-
processors and their on-chip support systems. In addition, to allow rapid early stage
investigation, the suite must contain tools capable of modeling systems at different levels of
detail. An example of such a tool is MCPAT [4]. It contains hierarchical power, area, and timing
models for various components which include three different levels of detail; Architectural,
Circuit, and Technology. Modeled components include cores, router and crossbar based NoCs,
caches, memory controllers, clocking circuitry, etc. MCcPAT has been used to investigate a
number of core cluster configurations in terms of their total area, power, and NoC latency without
considering the actual layout of the various configurations.

However, many other CMP design investigations do require layout information. For example, in
several studies [3, 22, 23] conducted at the University of Virginia, the effect of CMP layout on
peak chip temperature was investigated for a variety of possible chip configurations and target
uses. It was shown that the layout of the CMP, and in particular the relative placement of
components that tend to run hot and those that run cold, can have a marked impact on
temperature. In addition, it was shown that the severity of the temperature different is
exacerbated in applications such as laptops in which the size of any cooling apparatus is severely
limited. Finally, the lack of temperature-aware floorplanning can force runtime throttling of the
voltage and/or clock speed thereby effecting performance.

netwo

Figure 1 -- Extended McPAT Model Hierarchy. The blue rectangle encloses the domain for a traditional
floorplan tool, while the red rectangle encloses the domain for the layout algorithms presented and proposed
here. Note that there is an area of overlap between the two.

The UVA temperature studies provide a motivating example for the inclusion in a tool suite of a
CMP level floorplanner that can operate at a high level of abstraction. Traditional floorplan tools
typically operate with detailed information about the components and wires which comprise the
design. However, this level of detail may not be appropriate to early stage CMP design. In
addition, as discussed below, traditional floorplanners do not account for the challenges facing
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layout at the CMP level which is dominated by different design concerns than layout lower in the
hierarchy. Therefore, we present a novel approach to CMP floorplan layout. Figure 1 shows the
MCcPAT levels of hardware description augmented with a higher “CMP” level. The overlay
shows the targeted domain of traditional floorplan algorithms, and those described here.

More specifically, we borrow the model of Graphical User Interface design toolKkits such as Java
Swing [6] and Windows Presentation Foundation [7] in the construction of a novel framework for
floorplanning. After all, such toolkits are also designed to layout (rectangular) shapes in a 2D
space. In this model, components such as cores, caches, crossbars, etc. are placed within
containers. Associated with each container is a layout algorithm called a “layout manager” (LM).
Containers are themselves components; therefore the model is inherently hierarchical. Finally,
the model is implemented as a class library, allowing for extensibility of the model with
additional layout algorithms of arbitrary generality or specificity. In particular, a traditional
floorplan algorithm can be included smoothly within the architecture, as can very specific
knowledge-based LMs. To the best of our knowledge, no one has previously proposed this model
of hierarchical containment with differing layout algorithms for hardware floorplanning.

As proven in many other contexts, a very powerful tool paradigm is to have a few simple
primitives that operate well in conjunction with one another. Therefore, we have started by
implementing a small collection of such LMs first. Currently implemented LMs include one that
is driven by geographic hints about where components should be placed, another that supports
repeating grids, and a third that loads in pre-existing floorplans from a file. These simple,
intuitive, easy to use models of layout can be used in combination to produce interesting
floorplans. For example, the designer can use the geographic LM to create component clusters
which are then replicated across the chip in a grid; a pattern that appears often in CMP designs. In
addition, such a set of primitives acts as the foundation upon which to build more complex LMs,
especially ones specific to important CMP patterns such as NoC topologies, cache sharing
models, or more exotic CMP designs. The framework presented here acts as an organizing
framework into which such LMs can be added and used in combination in a consistent fashion.

The remainder of this document is organized as follows. Section 2 will discuss related work in
traditional floorplan algorithms and GUI frameworks. Section 3 will provide details of the layout
algorithms currently implemented. In section 4 we will use the new floorplan tool in two CMP
design scenarios as case studies to evaluate the benefits of the approach. Section 5 will present
next steps towards turning the current implementation into a more complete tool that is also better
integrated into a tool suite. Section 6 is the conclusion.

2. Background and Related Work

2.1 Floorplans

Placement and Floorplanning are two related activities that have been part of chip design for
decades. While optimal floorplan design is an NP-Hard problem, various approximation
techniques have been used to provide practical designs. Floorplanning is a rich and complex
topic that cannot be fully covered here. Classic texts that include chapters on these topics include
Gerez [1] and Sarrafzadeh and Wong [2]. These traditional floorplan algorithms take as input a
collection of components and the wires between them. They then try to find a non-overlapping
2D layout of the components that minimizes the value of an objective function such as a linear
combination of the total area and the total wire length, while staying close to square in shape.
Optimization algorithms use graph or tree representations, and use linear programming or



simulated annealing to approximate optimal solutions. An example floorplan of an Alpha EV6
computer at the architectural level of detail is shown in Figure 2.
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Figure 2 — Example Floorplan for the EV6 version of the Alpha chip at what the McPAT hierarchy would call
the Architectural level of detail. Floorplans for more detailed levels in the hierarchy are significantly messier
with a much wider disparity in component sizes, many very small pieces of a few transistors in size needed to
sew the larger pieces together, and “white space” or areas of the floorplan in which no transistors are located.
This is a “slicing” floorplan in that one can recursively partition this floorplan into pieces by drawing a line
completely through the remaining area at each level of the recursion.

For example, a popular technique is to represent the current floorplan as a tree of rectangular
areas, with hardware components as the leaves, and larger composite rectangles as one goes up
the tree. A “slicing” floorplan is formed by such a tree which is binary. As the name implies, the
remaining area is sliced into two not necessarily equal parts either horizontally or vertically at
each level of the layout. The space of possible layouts is searched via simulated annealing. At
each step, a “move” is randomly generated that takes the current floorplan and turns it into a new
floorplan. Legal moves are local perturbations of the tree structure, and include rearranging the
children of a node, moving children between nodes, laying a block on its side, etc. After each
move, the objective function is evaluated to determine if the move results in a floorplan which is
better or worse than the previous one. As with any simulated annealing algorithm, moves that



result is worse floorplans are accepted randomly with decreasing probability as the “temperature”
of the system goes down. Eventually, towards the end of the run, only moves that produce
improved scores are likely to be accepted. Throughout the process, the globally best
configuration is remembered and returned as the answer at the end of a specified number of
moves. One advantage of this approach is that all elements in the floorplan are handled in a
simple and consistent fashion. The use of simulated annealing as the search algorithm means that
traditional floorplanning can take a lot of runtime, and produce in any given run, a floorplan of
uncertain quality.

An added complexity in this process is that some individual components may have a fixed
rectangular shape and others not. Non-fixed components have a range of potential rectangular
shapes specified as a range of allowed “aspect ratios” (AR), which is the ratio of the width/
height. When present, such components lead to an enlarged search space for the floorplanner, but
also often provide flexibility that can lead to better floorplans. An additional move for such a
floorplanner is to change the shape of one or more components within their AR constraints.

The use of a tree structure in these algorithms seems to imply a hierarchical description of the
design space. However, this is not really the case. The tree structure is just a convenient
representation in which to generate moves, and the hierarchy has neither stability nor semantic
meaning. Many floorplanners do support the notion of a “macro” which is a pre-layed out
standard component that essentially acts as a leaf in the current level of the design. However, the
actual space being explored is still essentially a flat collection of leaf components.

Some modern floorplanners such as ParquetFP [9] and Fast-SA [20] do support another type of
hierarchy in their layout algorithm. As a prepass to the algorithm described above, they first find
subsets of components that are strongly connected by many wires. They then form one
component for each cluster, allow it some AR flexibility, then layout just these clusters as
indivisible units. This results in a set of blocks with fixed ARs that form the top level of the
layout. These blocks then have their interiors layed out one at a time within their specified AR.
This requires “fixed-outline floorplanning”. The added complexity is that many generated moves
may violate the fixed outline constraint. Such an algorithm must either temporarily allow such
floorplans, or are likely to quickly fall into a locked position in which no move will be allowed.
Chen et al. [21] proposes to apply such techniques recursively.

Still, the hierarchy represented in the model presented here is fundamentally different. The
hierarchical inclusion of components in containers is stable and has direct impact on the resultant
design. Components do not hop between containers during layout. More importantly, completely
different layout algorithms can be, and typically are, applied at different levels in the hierarchy.
Therefore, the inclusion of a component in a level of the hierarchy does have semantic meaning
in the design space. As more specific layout algorithms are added to the system that contain
domain specific knowledge about how their children should be layed out, the semantic content of
component placement in containers goes up. This model has the potential advantage of resulting
in better layouts. However, it does place upon the user the added burden of specifying which
components go into which containers, and which layout algorithms to use in those containers.

Several observations are relevant to evaluating the relative merits of these two models. First, as a
traditional floorplanner can be included as one layout algorithm, the presented framework can be
no worse than the current standard. As is now done, one would use bulk methods for loading
large numbers of components and wires into such a container by reading them in from a file.
Second, the layout algorithms either presented or proposed here for CMP level design are not



meant to handle large numbers of disparate components. As stated earlier, they are meant for the
higher layers in Figure 1 in which there are either fewer total components, or fewer types of
different components, or both. Finally, the current objective functions of traditional floorplanners
are not well matched for the design concerns that predominate at the CMP level.

Current floorplanners optimize for total wire length, total area, and perhaps target AR. However,
at the CMP level it might be more important to optimize for other factors. One such factor might
be minimizing the number of hops in the worst case route of the NoC. In addition, the designer
may well know that the latency of some wires is more crucial to the design than others. And for
some wires, the latency need not be minimized so long as it is below some critical value. While it
is possible to include such factors into an objective function, the more factors there are in the
function the wider the design space that must be searched. This would lead to even longer runs
times to obtain reasonable floorplans.

Instead of changing the objective function in the floorplanner, many CMP studies have wrapped
an extra evaluation function around the results of the floorplanner. We have already referred to
the UVA work on temperature aware floorplanning [3, 22, 23] and the use of McPAT [4] to
investigate of the power and area trade-offs for various cluster sizes in grid NoC configurations.
Later we will use these two examples as case studies for our floorplanner. But there are many
additional examples. Kumar et al. [5] did a detailed investigation of the area, power, and
performance ramifications of several CMP NoC organizations, using NoC latency as a primary
measure of floorplan optimization. Benini [11] did a similar study for application specific NoC
design for wireless communication SoCs. Murali et al [12] studied NoC topology for 3D SoCs
optimizing, among other things, the placement of Through Silicon Vias in the generated
floorplans. Meyer et al [13] studied the optimization of system reliability and cost in application
specific SoCs using various NoC configurations. Meyer has stated [private communication] that
over 90% of the runtime in the exploration of the relevant design space was spent in the
floorplanning component. Pande et al [8] also looked at area, power, and performance of various
NoC topologies. Here they chose to investigate 8 different packet based NoC topologies instead
of busses and crossbars. They floorplans they used were extremely rudimentary, and they
calculated most of their wire lengths from analytical models, not actual layouts.

In the model presented here, such investigations can be facilitated by the creation of domain
specific layout algorithms that attend to the factors important to the particular CMP design space
under investigation. This can be done either by building domain specific knowledge into a novel
LM, or by using existing LMs in a fashion directed by the designer’s intuition about which
organizations are likely to result in the desired attributes. The downside of this approach is that
the designer has to take the time to write these custom layout strategies.

Current floorplan algorithms are measured by their performance in standard floorplan
benchmarks such as GSRC from UC Santa Clara. The metrics used include total area, percent of
white space, total wire length, and runtime. As the floorplanning problems presented in such a
benchmark relate to post-RTL floorplanning, it is not the domain of the floorplan algorithms
presented here. Therefore, we have not pursued testing against such benchmarks.

2.2 GUI Design Toolkits

The idea of using hierarchical descriptions in the specifications of GUI designs has been around
for a long time, and it is not our intention to recapitulate this history here. Modern GUI toolkits
such as Java Swing [6] or Windows Presentation Foundation (WPF) [7] are 3™ generation



systems built upon the lessons learned in previous systems. Java Swing first shipped in 1998 has
the exact same architecture of components, containers, and layout managers that we are
proposing to use here. The current version of Swing contains about 10 different LMs, supporting
horizontal, vertical, grid, and box-and-spring placement of components. In addition, as is typical
in Java, the contract for the LM is defined as an interface. Therefore, anyone can create their own
LMs either on top of the base set or completely independently and have them participate in the
overall Swing architecture in a consistent fashion. In fact, there are many 3™ party Swing LMs
available on the web.

WPF is the latest in a series of component/container GUI models from Microsoft. It is intended
to span the creation of Windows apps, as well as web-based apps, and it therefore built on top of
the .NET infrastructure. Therefore, LMs are also defined in terms of interfaces, with 3" parties
providing custom LMs. It first shipped in 2006 with 6 LMs, such as stack, wrap, grid, etc. These
have very similar functionality to their Swing counterparts. It is interesting to note that in the
WPF architecture, layout is done recursively in two passes. In the first, all of the components are
queried for their sizes. In the second, the actual placement is performed. In our system, layout
also proceeds in these same 2 passes, one to get the total area needed by the components if layed-
out with no white space, followed by a recursive descent in which upper layer LMs dictate a
target AR to lower layer LMs. A difference is that on the way back up from the layout pass,
floorplan LMs are expected to perform fix-ups of their own size and shape if their inferiors were
unable to meet the expected area and/or AR goals.

Unlike Swing or WPF, our system is built in C++. Therefore, the LM abstraction is defined in
terms of an abstract base-class with virtual methods for component addition, layout, outputting to
a file, etc.

There is a long tradition of graphical (CAD) tools for both HW design and GUI design. Such
tools allow designers to directly translate their ideas about layout (and other design issues) into
portions of a specification for the system being developed. WPF provides such a graphical tool to
specify layouts, but Java Swing does not. A discussion of such tools is beyond the scope of this
paper. No CAD tool for the LMs presented here is currently contemplated.

3. Current Implementation

A key goal of the floorplanner is to integrate with the growing suite of tools under development at
UVA for CMP design space investigation. The tool suite already contains tools such as MV5
[15], McPAT [4], HotSpot [3], and ParquetFP [9]. Most of these tools are written in C++ which
is why C++ was also chosen as the implementation language of the floorplanner. Eventually, the
floorplanner will be better integrated with the rest of the tool suite (see Section 5). At that time,
the leaf components in the floorplan hierarchy will be components from MV5. However, as of
this writing, the MV5 components do not contain area information which is instead provided by
MCcPAT. Therefore, the floorplanner currently includes a leaf component wrapper class meant to
latter be replaced by the appropriate MV5 component base class. This wrapper class contains the
following information:

e Component type. Future LMs that are specific to various CMP structures will take the
type of the components into account when doing layout. In the current, more general
LMs, the type is ignored during layout. However it is used to provide information for
output.



e Minimum and maximum aspect ratios. For components that have fixed ARs, the
minimum and maximum will be the same. The minimum AR need not be square.

All components in the system are derived from a base class, which is very similar to a component
in one of the GUI frameworks.

e Components store their (X, y) location information relative to their container, not the
overall floorplan. That is, relative positioning is used, not absolute positioning.

e Components also have a specified area.

e Components have a width and height. However the actual width and height of the
component is often not known until after layout has occurred. This is so that the
recursive specification of AR information can flow from top to bottom during the layout
process. After layout, all components have a known width and height.

All LMs in the system are derived from an abstract container class. The container class contains
little more than its list of inferiors. However, the methods of the LMs are where the work of the
system is performed. There are two abstract methods on the container base class that all LMs
must implement. The first is to output the layout of the LM in HotSpot format. The reasons this
output format was chosen are twofold. First, HotSpot is an important recipient of layout
information in the tool suite. Second, it has the simplest possible format in which each element
simply specifies it name, width, height, and (x, y) location. The second important method for
LMs is of course the layout method. It takes a target AR as a goal. Often specific LMs use their
target AR in conjunction with information about the number and size of their inferiors to dictate
the target ARs for their inferiors. The flow of information during layout is as follows:

1. Each container, starting at the top of the hierarchy, calculates their target area as the sum
of the target areas of their inferiors. These requests for area information will flow from
the top down, while the actually sums are performed on the way back up. After this
stage, the top container knows its goal area if no white space is needed.

2. Next the container starts applying its layout to its inferiors, often calling those inferiors to
lay themselves out according to a target AR. Leaf components are also able to lay
themselves out by checking their minimum and maximum AR and complying as closely
as possible with the request from above.

3. Once an inferior is layed out, the LM checks to see if the inferior’s resultant width and

height is as requested. If not, it is the LMs responsibility to adjust accordingly.

As the LM finishes the layout for a given inferior, it then sets that inferior’s location.

Finally, once all inferiors are layed out, the container calculates its own width and height

based on the actual location and size of its inferiors.

o &

The system currently implements four LMs. All of them currently produce slicing floorplans.
The simplest LM to understand is the grid LM (GLM). It contains a single inferior (of arbitrary
nested complexity), and a total number of grid elements. The actual dimensions of the grid are
not specified. Instead, during layout, the GLM will determine the best dimensions for the grid
based on its requested AR. For example, if the grid layout method is called with a target AR of 2
(meaning twice as wide as high), and the grid contains 8 elements, the GLM will set its grid
dimensions to 2 rows by 4 columns. This allows the inferior to be layed out with the least
extreme AR targets (closest to a square). The GLM does not duplicate its inferior, but rather the
output method asks its inferior to output itself over and over again with different (x, y) locations.



1. geoglLayout * dCacheStack = new geoglLayout();

2. dCacheStack->addComponentCluster(Control, 1, 4, 10., 1., Top);

3. dCacheStack->addComponentCluster(L1, 4, 9, 3., 1., Bottom);

4. geoglLayout * CoreCluster = new geoglLayout();

5. CoreCluster->addComponentCluster(ICache, 5, 1, 10., 1., Left);

6. CoreCluster->addComponent(dCacheStack, 1, Left);

7. CoreCluster->addComponentCluster(RF, 4, 1, 10., 1., Top);

8. CoreCluster->addComponentCluster(Core, 16, 3, 2., 1., Bottom);

9. geoglLayout * L2Stack = new geoglLayout();

10. L2Stack->addComponentCluster("'EBC", 1, 3.166, 3., 1., Top);

11. L2Stack->addComponentCluster(*'C2C", 1, 3.166, 3., 1., Bottom);
12. L2Stack->addComponentCluster(MemCtrl, 2, 3.166, 3., 1., TopBottom);
13. L2Stack->addComponentCluster("'DMA™, 2, 3.166, 3., 1., TopBottom);
14. L2Stack->addComponentCluster(L2, 4, 9.5, 2., 1., Center);

15. geoglLayout * WholeChip = new geoglLayout();

16. WholeChip->addComponent(L2Stack, 1, Left);

17 . WholeChip->addComponentCluster(L2, 12, 9.5, 2.0, 1., Left);

18. WholeChip->addComponent(CoreCluster, 2, TopBottomMirror);

19. WholeChip->Layout(AspectRatio, 1.0);

20. WholeChip->OutputHotSpotLayout(“TRIPS.txt);

Figure 3 — TRIPS CMP level floorplan. The blue overlays (added manually for emphasis) show the various
portions of the layout put together by the use of hierarchical containment of multiple Layout Managers.



The most flexible of LM is the Geographic LM (GeoLM). To reduce the number of levels of
hierarchy that the user of the GeoLM needs to deal with, inferiors added to the GeoLM can take a
repeat count. The GeoLM will then automatically create a GLM as an inferior to contain the
repeating group. In addition, inferiors to the GeoLM are specified with a geographic hint that
indicates where the component is to be placed. The list of currently supported geographic hints
includes Left, Right, Top, Bottom, Center, LeftRight, and TopBottom. During layout, the
GeoLM takes its inferiors in order, and allocates all remaining space along the specified location
to the current component. LeftRight and TopBottom are different from the others in that they
expect to be applied to a repeating group of size that is a multiple of 2. They cut the group in half
and put each half in the specified location. In addition, the LeftRight and TopBottom hints have a
mirroring option and a 180 degree rotation option.

These two layouts alone can be used to produce some interesting floorplans. Consider the
following example code snippet, and the resultant floorplan shown in Figure 3. The bottom
portion of Figure 3 shows the Architectural layout for the TRIPS CMP [16]. The CMP contains 2
core clusters highlighted by the two blue rectangles on the right hand side of the floorplan. The
left hand side is a NUCA L2 cache array plus some off-chip communication components in the
upper and lower left corners.

The addComponentCluster method takes a component type, a repeat count, each component’s
area, the max and min AR constraints for the component, and the geographic layout hint. Lines
1-8 define the core cluster as a combination of a vertical stack of Control and L1 Cache (lines 1-
3) and 3 repeating groups of components, ICache (line 5), Register Files (line 7) and Cores (line
8). Line 6 includes the GeoLM from line 1 into the core cluster. Lines 10-14 define the left most
column of off-chip components and part of the L2 array. Lines 15-18 put the whole chip
together. Of particular note is line 18 in which the entire core cluster is duplicated and mirrored
with one statement. Lines 19 and 20 call the layout and output methods on the top-most container
in the hierarchy. The picture of the floorplan was produced by converting the HotSpot layout
format into PDF using third party tools.

The remaining two LMs are a bag LM which, as its name implies, takes an arbitrary collection of
components without any layout hint information. It lays them out from largest to smallest in size
within its target AR. The resultant floorplans are almost always one dimensional, because it
expects to have a rectangle remaining after each inferior component is layed out. Finally, there is
a fixed LM that does no layout, but instead allows its inferiors to decide the size, shape, and
location. It is largely used to load in layouts from existing HotSpot files as will be seen in the
next section.

4. Two Case Studies

The original goal of this project, and a critical next step for this research, is to use the
floorplanner in an architectural study investigating some aspect of the CMP design space. Here,
to help validate the framework, we will look at two previous CMP design explorations as case
studies of how this floorplanner could have been used. The first of the two studies investigated
the impact of CMP floorplans on overall chip temperature [3, 22, 23]. A synopsis of this research
appears in Section 1. Here we will focus on the floorplans that were considered, and how they
could have been produced with the current floorplanner implementation. Figures 4, 5, and 6
show side by side depictions of floorplans as presented in the original paper [22] (on the left) and
as produced by the new floorplanner (on the right). The left hand side pictures are color coded to
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show hotter temperatures in red and cooler temperatures in blue. In the generated floorplans, the
names of the components have been suppressed to enhance clarity.

The core component is the same Alpha EV6 as shown in Figure 2. In all of the floorplans, the
core is replicated four times and surrounded by cache. The cores naturally run hotter than the
cache, and the cache can act as a cooling buffer for the cores. In addition, different parts of the
cores run hotter than others, so the orientation of the cores relative to one another when in close
proximity can also materially impact the resultant temperature.

In Figure 4, the cores are placed in a conventional arrangement with mirror reflections in both the
x and y planes. This unfortunately places the hottest running portions of the cores, namely the
register files and ALUs, in close proximity to each other, and the resultant temperature is
significantly higher. Figure 5 shows the same arrangement of cores and caches, but with the
cores reoriented to keep the hottest components away from each other. This results in substantial
temperature reduction. Finally, in Figure 6, the cores are surrounded by cooler caches, resulting
in the best temperature profile of the three floorplans at the expense of slightly higher
communication latencies between the cores.

Figure 4 — Four Alpha cores surrounded by cache oriented with their Register Files and ALUs in close
proximity. The red color in the center of the picture on the left shows the resultant high temperature.

To produce these floorplans, the fixed LM was used to load in the floorplan for the Alpha core
from an existing HotSpot file. The remainder of the layout was straightforward use of GeoLM in
Figures 4 and 5 using TopBottomMirror in Figure 4, and TopBottom180 in Figure 5. In fact, that
one change is the only difference between the code for the two layouts. In Figure 6,
TopBottomMirror is again used to place the cores, while slightly more work is required to
calculate the area of the surrounding cache to maintain the total CMP ratio of 3 times as much
cache area as core area. Overall, the code for each of these configurations was shorter than that
required for the TRIPS example above.
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Figure 5 — The same four alpha cores reoriented to keep the Register Files and ALUS farther apart.

Figure 6 — The same four alpha cores, now with cache acting as a cooling buffer between cores.

In a follow on study [23], larger number of cores were included in different core/cache ratios to
investigate the effects of checkerboard like interspersing of cores and cache blocks. The
floorplans used in this study did not include actual core models, but rather uniform heat
generators of the appropriate size.

The study found that the largest factor effecting chip temperatures in these checkerboard-like
configurations was the core/cache ratio. Therefore, the Regular-50 pattern, in which half the area
is devoted to core and half to cache, was the hottest. The remaining layouts shown lower the core
area usage to 25%. The second largest factor was the location of cores near the edge of the die.
Such cores do not benefit from the cooling effects of the surrounding cache on one or two sides.
This effect was particularly pronounced in systems, such as laptops, without significant off-chip
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heat sinks. The Regular-25 was the hottest in such scenarios due to its many cores on the edges
of the chip. Alternate-25 ran noticeably cooler with no large heatsink. Finally, the effect of core
orientation was investigated in the Rotated-25 configuration, which had temperature
characteristics very similar to Regular-25.

The current floorplanner is capable of easily generating all of the investigated floorplans as show
in Figure 7. None of these floorplans required more than 25 lines of code. Rotated-25 was the
hardest do to its larger repeat pattern. The names of cache components was suppressed to
enhance readability.
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Figure 7 — Checkerboard-like layouts used to study effects of temperature dissipation in various core-cache
configurations. Clockwise from upper left, they are Regular-50, Regular-25, Alternate-25, and Rotated-25.
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Figure 8 — McPAT configurations of 64 cores in clusters that contains (clockwise from upper left) 1, 2, 4, and 8
cores per cluster. Notice the scaling of the crossbars in the clusters that make this CMP configuration hard to
justify in term of area budget above 4 cores per cluster.

For our second case study we consider the CMP design space investigation used to validate the
MCcPAT tool [4]. In this study, they modeled a 2D mesh topology of core/cache clusters
containing 64 Niagara-like cores. Each cluster contained a 1-1 ratio of cores and cache banks,
connected via a crossbar switch. In addition, each cluster also contained a NoC router that
supports communication between clusters. The crossbar was double pumped to reduce the
increase in crossbar area from the square of the number of cores per cluster to half that rate. And,
the single core cluster configuration needs no crossbar at all. In addition, all configurations
supported the same bisection bandwidth of the 2D NoC mesh. Therefore, for non-square grid
configurations (for example 2 cores per cluster in a 4x8 2D mesh), the NoCs were scaled to
support the needed bandwidth through the smallest of the two grid dimensions. Because of the
super-linear scaling of the crossbar area with cluster size, Li et al. conclude that this CMP design
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is not justified beyond 4 cores per cluster when including cost in the evaluation metric (EDAP).
When cost is not taken into account, the 8 core per cluster arrangement has the best performance
and area as measured by EDP.

The McPAT paper does not mention floorplans for these configurations. However, we have tried
to match the NoC scaling, crossbar scaling, and relative areas of cores and caches as presented in
that work. Figure 8 shows the resultant floorplans for four cluster configurations with 1, 2, 4, and
8 cores per cluster. To show the ease of building parameterized layout configurations on top of
the general purpose LMs, we wrote a 50 line subroutine that takes the number of clusters, the
number of cores per cluster, and does the component scaling and the floorplan generation for the
desired CMP configurations. The cluster layout can be handled by a single GeoLM which is then
placed into a grid LM. Admittedly, these layouts assume that the NoC component can take on
ARs beyond what may be possible. If the AR of the NoC components is constrained, the
resultant floorplans will contain a fair amount of white space to accommodate ill fitting shapes
unless the NoC component can be placed between the cores/caches along with the crossbar. In
addition, the assumption is made that the core AR is also a bit malleable, an assumption we
believe was also made in the original work.

5. Future Directions

Important future directions for this work fall into two categories. First, there are additional
features and capabilities that can and should be added to the floorplanner. Second, the
floorplanner model presented here must be validated by beneficial use in a CMP design space
investigation. Inclusion of a traditional floorplanner as an additional LM in the system helps both
of these goals. It acts as an important functionality for the tool suite going forward. It also acts
as the current standard against which any benefits provided by the new LMs used in a CMP
design study should be gauged. ParquetFP is a full-featured modern floorplanner that has been
used in several of the studies mentioned here, and has source available on the web for research
use. It is expected that this is the traditional floorplanner that will be added to the system.

Other potential improvements to the current system include the following:

1. It is important that the floorplanner be better integrated with other tools in the tool
suite. First, the leaf components should be the actual components modeled in other
tools in the suite such as MV5 and/or McPAT. Second, floorplans are currently
created by writing C++ code to create and connect the LMs in the hierarchy. A
textual specification language that can be used as input to the floorplanner would
allow the tool to be used without needing to edit the source code.

2. The current LMs are not sufficiently robust when their inferiors are not able to lay
themselves out in the requested AR. Fix ups on the way back up the recursion stack
are important in this hierarchical model. The current implementation of the GeoLM
is particularly fragile in this way.

3. It would be helpful to have a way to say that the next component to be layed out in
the GeoLLM should not take all the remaining space along one side of the current lay-
out rectangle. Currently the user must add an additional level of hierarchy to the
design to achieve this as was seen in the TRIPS floorplan specification. There are
several ways this could be done, all of which involve specifying additional hint
information, perhaps about the linkage between two direct inferiors of the GeoLM.
Swing contains such an LM called the SpringLayout. Adding this requires that
components in the layout have unique identifiers (currently, just the C++ pointers are
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used for this) and the layout must be able to handle the case in which the remaining
area is not rectangular. Still, the simple EV6 floorplan shown in Figure 2 currently
requires 8 different GeoLMs to be specified because of this limitation. Any new
feature(s) of this type would help.

4. Connectivity (wires) between components is not currently modeled in any of the
existing LMs. However, it is unlikely that a very general wiring model will be added
to the system as this type of floorplan constraint is already well handled by traditional
floorplanners. Instead, it is expected that this will be handled with more specific
LMs such as ones that model NoC topologies, or with the idea below.

5. Skadron et al. [17] point out the desirability for a floorplanner to be able to create
pre-RTL architectural level layouts for cores using information about the pipeline
flow between the processor elements. They suggest the use of “adjacency matrix”
floorplan specifications. Such an LM is likely to have wider applicability. The
features proposed in 3 above can help to provide the underpinnings for such an LM,
and the inclusion of such an LM in the floorplanner is a way to avoid the need to
specificy wires in certain scenarios.

6. Non rectangular components are not handled by any of the current LMs.

More important than any of the above suggested improvements is the use of the floorplanner in a
novel CMP design study. There are several possibilities for such a study. One possibility is the
ongoing UVA study to investigate the requirements for power distribution across a CMP chip
based on the power needs of the various components and the location of those components in the
specific CMP topology [unpublished]. Another possibility is to more completely investigate the
CMP design trade-offs suggested by Humenay et al. [18]. They point out that within-die
systematic process variation can lead to particularly undesirable effects in CMP design when it
causes different cores on the chip to have different performance characteristics. Such within-die
systematic variation can be minimized by placing cores near each other in the CMP floorplan.
However, the close proximity of the cores can cause other undesirable effects such as higher core
temperature, which in turn can cause dynamic frequency and/or voltage throttling, thereby
reducing performance. While the authors propose an analytical model for a metric to apply in
such situations, which was later greatly refined [19], they investigated a limited number of actual
floorplan configurations.

6. Conclusion
The work presented here has made several contributions.

e An argument has been made in favor of a new approach to pre-RTL floorplanning at the
architectural and CMP level of abstraction. Numerous examples of CMP level design
investigations have been cited that could have benefitted from such a floorplanner. This
high level early stage layout capability should be included in any comprehensive CMP
design tool suite.

e A novel hierarchical architectural framework, repurposed from GUI design, has been
suggested for floorplanning that makes it possible to add new floorplan algorithms (LMs)
in a consistent fashion. This in turn allows for the inclusion in a single system of many
different layout mangers, including current traditional floorplan algorithms, fairly general
purpose but high level LMs targeted at CMP layouts, and specific knowledge-based LMs
for particular NoC topologies, core-cache clusters, or other important CMP constructs.
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To the best of our knowledge, no one has previously proposed this architectural model
for hardware floorplanners.

e An initial set of four LMs have been provided that are simple, intuitive, easy to use, yet
powerful when used in combination, for the creation of CMP floorplans.

e The existing capabilities of the floorplanner were demonstrated in two case studies of
previous CMP design space investigations.

e ArchFP can be downloaded from http://lava.cs.virginia.edu/archfp. It is made available
under a BSD-type open-source license.
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